πŸ’‘ Generative AI & Prompt Engineering

Unlock the power of tools like ChatGPT and Copilot to boost productivity, automate tasks, and create AI-driven solutions.

AI

a black and green logo on a black background
a black and green logo on a black background

Duration: 8 Weeks | Mode: Online | Hands-on Projects + Tool-Based Learning

🎯 Who Should Join?

  • Software developers, data scientists, and ML engineers

  • Product managers, QA engineers, tech leads

  • AI enthusiasts and professionals looking to upskill in GenAI

  • Anyone interested in building AI-powered applications and tools

πŸ“˜ Course Overview

This course offers a complete, hands-on introduction to Generative AI, Large Language Models (LLMs), Prompt Engineering, LangChain, and cloud-based GenAI services. Learn to build GenAI-powered chatbots, automate content generation, fine-tune models, and deploy secure and scalable solutions using AWS, Azure, and GCP.

πŸ“š Key Modules & Topics Covered

πŸ”Ή Module 1: Introduction to Generative AI

  • Generative AI vs Traditional AI

  • NLP Basics, ML vs DL vs AI

  • Popular Use Cases (Content, Code, Image, Voice, Testing)

πŸ”Ή Module 2: Large Language Models (LLMs)

  • OpenAI, GPT, BERT, T5, Transformers

  • GANs, Autoencoders, RLHF

  • Text Generation & Chatbot Concepts

πŸ”Ή Module 3: Foundation Model Architectures

  • Encoder (BERT), Decoder (GPT), Encoder-Decoder (T5)

  • Open Source vs Commercial Models

  • GGML vs GGUF Quantization

πŸ”Ή Module 4–5: LangChain & Retrieval Augmented Generation (RAG)

  • LangChain + LamaIndex Integration

  • Hugging Face APIs

  • Vector DBs, Semantic Search, RAG Design

  • Medical Chatbot Project (End-to-End)

πŸ”Ή Module 6–8: Advanced RAG, Fine-Tuning & Evaluation

  • COT, LOTR

  • LoRA, Soft Prompts, PEFT Techniques

  • Evaluation Metrics: BLEU, METEOR, ROUGE1, CIDEr

πŸ”Ή Module 9–13: Cloud Platforms & Deployment

  • Deployment Strategies, Hardware Planning

  • Generative AI on Hugging Face Hub

  • AWS Bedrock, Azure Cognitive Services

  • GCP Vertex AI & Gemini Pro

πŸ”Ή Module 14: Introduction to ChatGPT & GPT Architectures

  • GPT-3.5 vs GPT-4

  • Capabilities, Architecture, Limitations

  • Ethics & Bias Management

πŸ”Ή Module 15–16: Prompt Engineering (Core + Advanced)

  • Prompt Types: Zero-shot, Few-shot, Chain of Thought

  • Tokens, Parameters, Creativity in Prompts

  • Avoiding Hallucinations, Prompt Optimization

πŸ”Ή Module 17–18: Agents & Guardrails

  • LangChain Agents, AWS Bedrock Agents

  • Crew AI Overview

  • Implementing Guardrails (Azure, AWS)

πŸ”Ή Module 19: GitHub Copilot for Developers

  • Code Generation, Documentation & Testing

  • Using Copilot in real-world workflows

  • Prompting best practices for coding agents

πŸ”Ή Module 20: Generative AI for Software Testing

  • Test Case Generation from Images

  • Understanding & Automating Test Scripts

  • GenAI-Driven QA Strategy

πŸ”Ή Module 21: Real-World Case Studies & Projects

  • Build:

    • Chatbot for Medical Industry

    • NLP-to-SQL Generator

    • Chat with PDF Bot

    • Code Translation Tool

    • Gemini Pro Project

    • Self-Healing Code Demo

βœ… Course Outcome

By the end of this course, you'll be able to:
βœ”οΈ Build GenAI apps using LangChain, LLMs & RAG
βœ”οΈ Craft effective prompts for text, code, and conversation
βœ”οΈ Fine-tune and evaluate foundation models
βœ”οΈ Deploy GenAI solutions using AWS, Azure, and GCP
βœ”οΈ Lead GenAI initiatives in real-world enterprise projects